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Optimal shapes in the class of polynomial functions for rotating annular disks with respect
to the mixed creep rupture time are found. Two effects leading to damage: diminishing of
transversal dimensions and growth of micro-cracks are simultaneously taken into account.
The first of them requires the finite strain analysis, the latter is described by Kachanov’s
evolution equation. Behaviour of the material is described by nonlinear Norton’s law, genera-
lized for true stresses and logarithmic strains, and the shape change law in form of similarity
of true stresses and logarithmic strains deviators. For optimal shapes of the disk, changes
of geometry and a continuity function are presented. The theoretical considerations based
on the perception of the structural components as some highlighted objects with defined
properties is presented.
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1. Introduction

The problems of optimal design in creep conditions are rather new ones, they started at the
end of the last century. The difficulty, first of all, is connected with a new additional variable
– time. On the other hand, such problems offer new possibilities of formulation of optimization
problems Betten, 2001). Życzkowski (1971, 1988) pointed out some new optimization criteria
such as: stress relaxation, limitation of displacements or their velocities at a given time, and
time to creep rupture, which seems to be the most important one. Many solutions were found
for structures with maximal time to brittle creep rupture (Białkiewicz, 1986; Ganczarski and
Skrzypek, 1976; Piechnik and Chrzanowski, 1970; Rysz, 1987). Such problems are comparatively
simpler, because they may be solved within the framework of the small strain theory. Optimal
shapes often coincide with shapes of uniform initial strength. Much more complicated are pro-
blems of optimization using other theories of creep rupture: ductile and mixed. Both of them
are connected with large deformations and require the finite strain theory. Therefore, solutions
of optimal design with respect to ductile (Hoff, 1953) or mixed rupture time (Kachanov, 1960,
1999) are rather scarce. Till now, only optimal rotating bars and rotating disks with respect to
ductile rupture were found by Szuwalski (1989, 1995). Some problems of prismatic rods under
tension were discussed by Golub et al. (2008). The ductile creep rupture analysis for elasto-
plastic disks was carried by Dems and Mróz (1992), Ahmet and Erslan (2003), Çallıoǧlu et al.
(2006), Farshi and Bidabadi (2008), Jahed et al. (2005) and Gun (2008). Modifications of the
Hoff model was proposed by Golub and Teteruk (1994). The influence of boundary conditions
on the optimal shape was investigated by Pedersen (2001) and Szuwalski and Ustrzycka (2013).
Even more difficult are problems of optimal design with respect to mixed creep rupture time as,
besides large strains, they take into account damage development. The first solutions for optimal
structures were found by Szuwalski and Ustrzycka (2012, 2013).
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2. Formulation of the problem

In the present paper, the initial shape of a rotating annular disk of given internal and external
radii A and B and given volume V (Fig. 1) ensuring the longest time to mixed creep rupture
time is sought. For the annular disk of the given volume V , initial thickness H and initial radii
A, B rotating with constant angular velocity ω, made of a material with known properties with
mass M uniformly distributed at the outer edge, the optimization problem is stated as follows:
• for given V , A, B, ω, γ, M

• we look for the initial profile of the disk H(R; b0, b1, b2) = b0 + b1R+ b2R2

• that t(m)∗ → max

Fig. 1. Model of the annular rotating disk

The problem seems to be of great importance because in such a way rotors of jet engines,
power plant turbines working in high temperatures may be calculated. In such structures, the
creep effects must be taken into account, additionally of great importance are body forces. The
axially symmetric problem (all variables depend only on one material coordinate, radius) is
described using the material, Lagrangean coordinate denoted by capital R. The corresponding
special coordinate r is the radius of the considered point of the disk after deformation and R is
the radius of the considered point of the disk prior to deformation. The external loading of the
disk results from the centrifugal force acting on the blades of total massM put at the outer edge
of the disk on the assumption that they are uniformly distributed. Moreover, the body forces
connected with own mass of the disk are taken into consideration. What makes the problem
more difficult is that both loadings depend on the spatial coordinate and change within the
creep process. The condition of internal equilibrium derived for an already deformed element of
the disk takes form

1
hr′
∂

∂R
(hσr) +

σr − σϑ
r
+
γ

g
ω2r = 0 (2.1)

where r′ denotes the derivative of spatial coordinate with respect to the material one, h –
current thickness of the disk. By “primes” in all formulas are denoted derivatives with respect
to the material coordinate, while by overdots – with respect to time. The disk rotates with
constant angular velocity ω and is made of a material with the specific weight γ. Radial and
circumferential stresses are true stresses related to already deformed cross-sections. The stress
orthogonal to the plane of the disk is disregarded (plane stress state assumption). Consequently,
for large deformations, the logarithmic strains are introduced. They are connected with true
stresses by Norton’s law

ε̇e = kσne (2.2)
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here expressed by true stresses and logarithmic strains and generalized for complex stress state
with the help of the Huber-Mises-Hencky hypothesis

σe =
√
σ2r + σ

2
ϑ − σrσϑ (2.3)

The shape change law is adopted in form of similarity of true stresses and logarithmic strains
deviators, in which the creep modulus ϕc is equal to

ϕc = kσn−1e (2.4)

This leads to the relationship

ṙ

r
=
1
2
kσn−1e (2σϑ − σr) (2.5)

Additionally, the compatibility equation for axially symmetric logarithmic strains

εr = εϑ + ln
(
1 +R

∂εϑ
∂R

)
(2.6)

expressed, with the help of the shape change law, by stresses, takes form

σ′ϑ =
6σ2e(σr − σϑ)

r′

r
− σ′r[(n− 1)(2σr − σϑ)(2σϑ − σr)− 2σ

2
e ]

(n− 1)(2σϑ − σr)2 + 4σ2e ]
(2.7)

The general assumption of incompressibility of the material may be written

HRdR = hr dr (2.8)

Large deformations of the disk are accompanied by development of micro-cracks whose effect is
described by Kachanov’s evolution law

∂Ψ

∂t
= −D

(σe
Ψ

)m
(2.9)

where Ψ stands for the continuity function describing the degree of damage of material, D and
m stand for material constants. With the help of the above presented equations, the five unk-
nowns: true radial σr and circumferential σϑ stresses, spatial coordinate r, current thickness h
and continuity function Ψ may be calculated. This can be done only by numerical integration of
the derived earlier equations. All unknowns are functions of two independent variables: material
coordinate R and time t. For numerical calculations, the dimensionless quantities must be intro-
duced. The full, flat, motionless disk of volume V and radius B subjected to the uniform radial
traction s resulting from centrifugal force caused by mass M uniformly distributed at radius B,
serves as a comparative disk

s =
Mω2

2πhm
=
Mω2B2

2V
(2.10)

where hm stands for constant thickness of the comparative disk. The dimensionless stress is
related to s (2.10), whereas the dimensionless time is defined as

t̂ =
t

t
(d)
0

(2.11)

where t(d)0 stands for the time of ductile rupture for the full plane disk. To evaluate the time of
ductile rupture t(d)0 for the full plane disk, the following equation may be used

ε̇z =
ḣ

h
=
3
2
kσn−1e (σz − σm) (2.12)
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In the problem under consideration, the effective stress is

σe = σr = σϑ = p (2.13)

while the mean stress

σm =
2
3
p (2.14)

The implementation of these substitutions to (2.12) leads to the equation

1
h

dh

dt
= −k

(Mω2

2πh

)n
(2.15)

describing the change of thickness in time. The initial condition takes form

for t = 0 h = hm (2.16)

The condition of ductile rupture: h→ 0, enables calculation of the time of ductile rupture t(d)0

t
(d)
0 =

1

nk
(
Mω2

2πhm

)n =
1
nksn

(2.17)

Finally, dimensionless time (2.11) is defined as

t̂ = nksnt (2.18)

The dimensionless radii are related to external radius B of the comparative disk and dimension-
less thickness to its constant thickness hm.
Finally, the set of five differential dimensionless equations takes form

σ̂′r =
r̂′

r̂
(σ̂ϑ − σ̂r)− 2r̂r̂′µ−

ĥ′

ĥ
σ̂r

σ̂′ϑ =
6σ̂2e(σ̂r − σ̂ϑ)

r̂′

r̂
− σ̂′r[(n− 1)(5σ̂r σ̂ϑ − 2σ̂

2
r − 2σ̂

2
ϑ)− 2σ̂

2
e ]

(n− 1)(2σ̂ϑ − σ̂r)2 + 4σ̂2e

(2.19)

and

dr̂

dt̂
=
r̂

2n
(σ̂2r + σ̂

2
ϑ − σ̂rσ̂ϑ)

n−1
2 (2σ̂ϑ − σ̂r) ĥ =

ĤR̂

r̂′r̂
(2.20)

and

∂Ψ

∂t̂
=

−1
(m+ 1)Θ

( σ̂e
Ψ

)m
(2.21)

where all dimensionless quantities are denoted by (•̂) over the symbol, and additional parameters
µ and Θ are introduced

µ =
γV

gM
(2.22)

where µ is the ratio of own mass of the disk to the mass M uniformly distributed at the outer
edge, and Θ contains and replaces four material constants from Norton’s law and the evolution
equation

Θ =
t
(b)
pr

t
(d)
pr

=
nk

(m+ 1)D
sn−m (2.23)
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and is defined as the ratio of brittle and ductile creep rupture time of prismatic bars subject to
tension with stress s (2.10). This parameter may be also treated as a measure of sensitivity on
the kind of creep rupture.
We define the rupture criterion in the following form

∃R : R ∈ 〈0, l〉 ∧ Ψ ∈ 〈1, 0〉 ∧ Ψ(σ)
∣∣∣
t
(m)
∗

→ 0 (2.24)

The time after which the continuity function diminishes to zero is the time of mixed rupture t(m)∗ .
The criterion of rupture is adopted in form of diminishing to zero the value of the continuity
function at least at one nodal point.

3. Numerical calculations

To obtain unique solutions for the above presented set of differential equations, initial and
boundary conditions must be formulated. At the beginning of the creep process, the shape of the
disk is described by the assumed equation H(R). As the initial condition serves the coincidence
of the spatial and material coordinate

r̂(R̂, 0) = R̂ ĥ(R̂, 0) = Ĥ(R̂) (3.1)

The boundary condition at the inner radius A may be formulated in several ways. In the case
when the disk is connected with a rigid shaft

σ̂r(β, t̂) = 2σ̂ϑ(β, t̂) (3.2)

the radial stress is two times larger than the circumferential one, but their values are unknown.
The parameter β stands for the ratio of radii of the disk: β = A/B. On the other hand, at the
outer radius, the radial stress must be equal to tension caused by the centrifugal force acting on
the mass M placed there

σ̂r(1, t̂) =
1

ĥ(1, t̂)
(3.3)

For this reason, a recurrential procedure must be used. Assuming various values of stresses at
the radius A, we must finally find such values which will make it possible to satisfy condition
(3.3). The numerical algorithm consists of three steps:

• first step – for given geometry of the disk, the true stresses distribution is established (from
Eqs. (2.19)). We do not know the values of stresses at the inner edge of the disk, so we
assume them arbitrarily. The boundary condition at the outer edge of the disk must be
fulfilled (see Fig. 2).

• second step – from the first step, the distribution of true stresses is known. It is possible
to establish the new, changed geometry of the disk (from Eqs. (2.20)). The mixed creep
rupture can occur earlier than the ductile creep rupture. Therefore, it is necessary to check
whether the thickness is not small enough (hadm), which finishes the procedure.

• third step – the distribution of the continuity function Ψ is calculated from Eq. (2.21). If
its minimum value satisfies the rupture criterion, the creep process is finished – the time
to mixed rupture has been found.
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Fig. 2. Algorithm of numerical calculations – flow chart

4. Uniparametric optimization

Due to the inability of explicitly writting the objective function (mixed rupture time) as a
function of the optimization parameters (initial profile of the disk), the parametric optimization
is applied (search method). Initially, the optimal solution is sought among conical disks whose
initial shape is described by the formula

Ĥ(R̂;u0, u1) = u0 + u1R̂ (4.1)

From the condition of constant volume this leads to

u1 =
3
2
(1− u0) (4.2)

so only one free parameter u0 remains.

4.1. Conical disk clamped on a rigid shaft

The optimal solutions of the disks clamped on a rigid shaft for various parameters Θ are
presented in Fig. 3.
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Fig. 3. Optimal profiles of a conical disk clamped on a rigid shaft, β = 0.1, µ = 0.1

For Θ = 0.4 the optimal profile of the conical disk becomes almost flat. For higher values of
the parameter Θ, the mass moves toward the inner edge.

4.2. Conical disk with the free inner edge

The boundary condition at the inner radius is described in the following way

σ̂r(β, t̂) = 0 (4.3)

and at the outer radius by the following equations

σ̂r(1, t̂) =
1

ĥ(1, t̂)
(4.4)

The optimal profiles for the conical disk found according to the algorithm presented in Fig. 2 as
a function of the parameter Θ are plotted in Fig. 4.

Fig. 4. Optimal profiles of the conical disk with the free inner edge, β = 0.1, µ = 0.1

The optimal profiles of conical disks with the free inner edge are characterized by a significant
reduction of thickness at the outer radius, even larger than that for the disk clamped on a rigid
shaft.
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5. Biparametric optimization

It is expected that the earlier presented results could be improved by expanding the class of
functions, in which the optimal solution is sought. In the next step, biparametric optimization
is used. The initial shape is defined by a quadratic function

Ĥ(R̂; b0, b1, b2) = b0 + b1R̂+ b2R̂2 b2 6= 0 (5.1)

From the three parameters in this function, only two may be treated as free ones, the third
results from the given volume of the disk

b2 = 2− 2b0 −
4
3
b1 (5.2)

The search process for biparametric optimization is much more time-absorbing. For the given
parameter b0, the time to the mixed rupture for various parameters b1 is calculated. In such a
way one may find the parameter b1 leading to the longest lifetime. This procedure is repeated
for subsequent values b0. At last the optimal solution is established as “maximum maximorum”
of all investigated disks (sometimes almost hundred).

5.1. Parabolic disk clamped on a rigid shaft

The creep process of the annular rotating disk is considered for three different boundary con-
ditions. As the first, the disk clamped on a rigid shaft will be analyzed (e.g. welded connections).
Then, despite condition (3.2), an additional condition must be satisfied

ĥ(β, t̂) = Ĥ(β, 0) (5.3)

Optimal shapes of the disks for biparametric optimization are shown in Fig. 5.

Fig. 5. Optimal shapes of disks clamped on the rigid shaft, β = 0.5, µ = 0.1

For Θ = 0.4 the optimal shape of the disk is characterized by a large increase of thickness
at the external edge. In spite of larger centrifugal forces, the outer edge works as a kind of
reinforcement slowing down the creep process. For larger values of the parameter Θ, this effect
does not occur.
The course of the creep process for finding the optimal disk with the initial profile described

by the function

Ĥ(R̂) = 3.51 − 5R̂+ 2.76R̂2 (5.4)
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is presented in Fig. 6 showing changes of the shape (a) and of the distribution of the continuity
function (b) in terms of time. The distribution of the continuity function at the moment of
rupture is not uniform, the criterion of rupture is fulfilled inside the disk at one point. For other
radii, values of the function Ψ are non-zero, and at the inner and outer edge they are quite large.
This effect is related only to disks with the initial profile described by quadratic function (5.4).

Fig. 6. Time cross-section of the creep process for β = 0.5, µ = 0.1 and Θ = 3

5.2. Parabolic disk fastened on the rigid shaft with thickness allowed to change

Optimal shapes of disks fastened on a rigid shaft (radial displacement is possible) but with
possibility of thickness changing (e.g. spline joint) are shown in Fig. 7.

Fig. 7. Optimal shapes of disks fastened on the rigid shaft β = 0.5, µ = 0.1

For Θ = 0.4 and Θ = 3 the optimal shapes of the disk have a reinforcement of the outer
edge (increase of the thickness). For Θ = 10 this effect is smaller.
The above figure drawn for the optimal disk

Ĥ(R̂) = 4.39 − 8R̂+ 5.05R̂2 (5.5)

shows the time cross-section of the optimal profile of the annular disk fastened on the rigid shaft
(Fig. 8a) and the continuity function (Fig. 8b). The geometrical changes of the profile of the disk
in the creep process are not significant. Due to small width of the disk, the change of thickness
at the inner edge, although permissible, is not too large.



66 A. Ustrzycka, K. Szuwalski

Fig. 8. Time cross-section of the creep process for β = 0.5, µ = 0.1, Θ = 3

5.3. Parabolic disk with the free inner edge

Optimal shapes of the free disks (4.3) for biparametric optimization are shown in Fig. 9.

Fig. 9. Optimal shape of the disk with the free inner edge, β = 0.5, µ = 0.1

The reinforcement of the outer edge of the disk is observed for Θ = 0.1. For Θ = 0.2 and
Θ = 0.3 the optimal shapes are characterized by reduction of the thickness of the disk toward
the outer edge.
As an example of the found optimal profiles is

Ĥ(R̂) = 4.09 − 5.01R̂ + 1.79R̂2 (5.6)

The time cross-section for this optimal profile of the free disk and the continuity function is
shown respectively in Figs. 10a and 10b.
The time cross sections of the continuity function indicate that the criterion of rupture of

the disk is fulfilled at the inner edge, despite the significant reinforcement of thickness at this
point.

6. Corrected disks of uniform initial strength

We expect that disks of uniform initial strength, in which the radial and circumferential stresses
are equal and independent of radius, would be close to the optimal profiles with respect to the
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Fig. 10. Time cross-sections of the creep process for the free edge, Θ = 0.2, β = 0.5, µ = 0.1

mixed rupture time. For a homogeneous material of the uniform initial strength disk, for t = 0,
the radial Σr and circumferential Σϑ stresses are the same

Σr = Σϑ = Σ = const (R) (6.1)

and the stress perpendicular to the middle surface of the disk is assumed to be equal to zero
(σz ≡ 0).
The shape of uniform initial strength disks results from the internal equilibrium equation

Ĥus(R̂) =
1

Σ̂
exp
[ µ
Σ̂
(1− R̂2)

]
(6.2)

where Σ̂ denotes the dimensionless equalized initial stress calculated from the condition of
constant volume

Σ̂ =
µ

ln(1 + µ)
(6.3)

The correction of shape (6.2) is imposed, which is adopted here in form of a third degree
polynomial function without linear term

Ĥcor = p0 + p2R̂2 + p3R̂3 (6.4)

Finally, the initial profile of the disk is described by the equation

Ĥ(R̂) = Ĥus(R̂) + Ĥcor(R̂) (6.5)

Numerical calculations have been carried out for the set of parameters: µ = 0.1, Θ = 3, and
exponents: in Norton’s law n = 6, in Kachanov’s law m = 2. It turns out that the optimal
correction takes form

Ĥcor = −0.3− 0.04R̂2 + 9.47R̂3 (6.6)

The optimal shape of the corrected disk of uniform initial strength compared with the profiles
obtained with uni- and biparametric optimizations is presented in Fig. 11. Additionally, the time
to rupture for all those solutions is given.
The corrected profile of uniform initial strength disks provides the longest time to mixed

rupture. It is characterized by significant strengthening of the middle and outer part of the disk,
which seems to be very reasonable taking into account the results shown in Fig. 11.
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Fig. 11. Optimal shape of the uniform initial strength disks compared with uni- and biparametric
optimization

7. Conclusions

The problems of optimal design in creep conditions are very difficult due to a new additional
factor-time. When the time to ductile or mixed creep rupture is involved, the difficulties even
grow. Such problems require the finite strain approach, i.e. resignation of the rigidification the-
orem and analysis of the already deformed body using true stresses and logarithmic strains. For
this reason, the parametric optimization is applied – the initial shape of the disk is described by
a polynomial function. The obtained solutions strongly depend on boundary conditions at the
inner edge of the annular disk. For disks fastened on a rigid shaft, the time to rupture is much
longer than for disks with free inner edges. Better results – longer times to mixed creep rupture
are obtained for biparametric optimization – the initial shape described by a quadratic function.
The best results are obtained for the disk of uniform initial strength corrected by a polynomial
function of the third degree. A significant influence on the optimal solution of the parameter Θ
describing the sensitivity of the material to brittle or ductile rupture is observed. Also the ratio
of own mass of the disk and mass placed at the outer edge µ is of great importance.
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